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Abstract 
 

Option prices theoretically encapsulate participants' expectations about good state 
(bullish) and bad state (bearish) market outcomes. By using a mixture of distributions and 
reasonable assumptions, the authors extract time series of expected returns, volatilities and 
mixture probabilities of these outcomes surrounding the current US elections.  The bimodality of 
asset return distributions suggests important modifications for asset allocation and risk 
management. 

 
Key Takeaways 

 
o Rather than being unimodal, asset price distributions reflect a mixture of good and 

bad states.  The probability of being in these states changes with time and during 
important events. 

o During elections, the bimodality and the spread of the mixture distributions 
increases as a function of increased uncertainty. 

o Since a mixture of distributions can exhibit fatter tails and negative skew, the 
mixture approach requires asset allocation adjustments and hedging to manage 
risks. 
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Investing in financial markets requires participants to become comfortable with 

uncertainty. Especially during important events and episodes, such as elections, key data 
releases, or catastrophic occurrences, the perceived uncertainty reflected in market prices tends 
to rise. Given the impact of low probability, high severity events on portfolios, it is important for 
investors to understand the likelihood and probability of potential outcomes and position 
portfolios accordingly. Even though in the long run, markets reflect fundamentals, and certainly 
the stock market reflects long-term growth of the economy, in the short run, e.g. over a few days, 
and even over a month, Mr. Market can change his mind rapidly and without warning.  As 
Warren Buffett remarked in his 1987 letter to shareholders, quoting his mentor Ben Graham: 

 
Even though the business that the two of you own may have economic characteristics that 

are stable, Mr. Market’s quotations will be anything but. For, sad to say, the poor fellow has 
incurable emotional problems. At times he feels euphoric and can see only the favorable factors 
affecting the business. When in that mood, he names a very high buy-sell price because he fears 
that you will snap up his interest and rob him of imminent gains. At other times he is depressed 
and can see nothing but trouble ahead for both the business and the world. On these occasions, 
he will name a very low price, since he is terrified that you will unload your interest on him. 

 
Options markets in principle encapsulate the views of all market participants, aggregating 

in prices the mixture of both pessimists and optimists. Additionally, options markets not only 
allow investors to extract information about the uncertainty prevalent in the markets, but they 
also allow investors to use this information to buy or sell the options themselves. This feedback 
mechanism can thus potentially influence further estimation of the uncertainty.  Once the options 
markets themselves reach a locally stable point, it is possible to quantify the uncertainty in the 
form of implied probability distributions, and investors can overlay their own probabilistic 
forecasts on top of the market pricing to take advantage of perceived mispricing by market 
participants in the aggregate. 

 
While the standard approach follows extracting a uni-modal implied distribution from 

option prices, our approach differs by imposing a very simple bimodal structure on the markets, 
and thus extracting the market’s probability of being in a “good” state or in a “bad” state from 
locally stable options prices before and after important events.  In the good state the markets are 
posited to have positive expected returns, and in the bad state the markets have a negative 
expected return.  The probability of being in the states is the quantification of the market’s 
perception of how likely we are to end up in one of these states.   

 
We hasten to add that none of the techniques in this paper are new or original.  However, 

we think that the simple yet revealing approach we utilize in the context of recent market events 
is of critical importance for investor asset allocation decisions. Indeed, many techniques have 
been developed (see e.g. Breeden and Litzenberger [1978]) to extract the risk-neutral probability 
distribution of outcomes from option prices. In this paper, we go one step further: we take option 
prices over various recent events and fit them to a bimodal distribution formed as a mixture of 
two lognormal distributions. This formulation requires the estimation of five parameters 
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corresponding to the mean and standard deviation of the two lognormal distributions and the 
mixture probability. With this simple yet parsimonious formulation, we can ask three main 
questions: 
 

1. What do the component distributions tell us about the expectations of risk and return in 
“good" (bull market), and “bad" (bear market) states? How do these expectations evolve 
with time as a function of major market events? 

2. Does the probability of being in bull or bear states change significantly over time, 
especially during market crises and other significant market events? 

3. Does the knowledge gained about the mixtures forming the actual implied distribution 
change optimal asset allocation and risk management techniques? 

 
Our main findings regarding the first question are that the shape of the implied return 

distributions change significantly during normal and stressed market situations, and in particular 
the uncertainty in both distributions changes significantly during market stresses. Regarding the 
second question, we find that the probability of being in bull states and bear states during the 
period that our options data covers is relatively stable, which was a somewhat surprising result 
given the general belief both in the practitioner and behavioral finance literature that variation of 
subjective probabilities play the dominant role in shaping perceptions of risk and return.  Our 
answer to the third question is that armed with the changing shape and mixture of the bull and 
bear states, investors can dynamically improve their risk management posture. 
 

Our purpose is to use this simple framework to explain the risk perception of market 
participants corresponding to two very distinct states. As discussed elsewhere, the possibility of 
bimodality in asset returns can significantly impact both the optimal asset allocation of investors, 
and the need for hedging (Bhansali [2013]).  We have also found that when the probability of 
one type of event (good or bad) starts to approach unity as implied by the options markets, it can 
imply overconfidence in aggregate, and the market as a whole is unprepared for a reversal in the 
consensus. 
 

 
Extracting Bull and Bear Market Distributions 
 
In this section, we describe our simple but parsimonious model. From there, we present 

the main results for the S&P500 in special periods of interest, such as the financial crisis and the 
recent U.S. Presidential elections. 

 
In our model, the expected value of an asset,𝑆𝑆, is the probability weighted average of its 

future payoffs at 𝑇𝑇 discounted back to the present time 
 

𝑆𝑆 = 𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑓𝑓(𝑆𝑆𝑇𝑇)𝑆𝑆𝑇𝑇𝑑𝑑𝑆𝑆𝑇𝑇 

 
The probability density function 𝑓𝑓 is estimated from option prices by taking the second 

derivative of call option prices with respect to strike (Breeden and Litzenberger [1978]): 
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𝑓𝑓(𝐾𝐾) = 𝑒𝑒𝑟𝑟𝑟𝑟
𝑑𝑑2𝐶𝐶(𝐾𝐾)
𝑑𝑑𝐾𝐾2  
 

To capture potential bimodality of the distribution, a mixture of lognormals can be used 
to model 𝑓𝑓 (Melick and Thomas [1997]). In order to split the probability distribution into two 
distinct states, i.e. “good” and “bad”, or “bull” and “bear”, we force 𝑓𝑓 to be a mixture of two 
lognormals with mixing probability 𝑝𝑝. We take 𝑓𝑓𝐵𝐵(𝐾𝐾,𝑝𝑝) to take the form: 

 

𝑓𝑓𝐵𝐵(𝐾𝐾,𝑝𝑝) = 𝑝𝑝 1
𝐾𝐾𝜎𝜎𝐴𝐴√2𝜋𝜋

exp�
−�ln�𝐾𝐾𝑆𝑆�−𝜇𝜇𝐴𝐴�

2

2𝜎𝜎𝐴𝐴
2 �+ (1 − 𝑝𝑝) 1

𝐾𝐾𝜎𝜎𝐵𝐵√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �

−�ln�𝐾𝐾𝑆𝑆�−𝜇𝜇𝐵𝐵�
2

2𝜎𝜎𝐵𝐵
2 �  

 
 
 
 𝜽𝜽 = (𝑝𝑝, 𝜇𝜇𝐴𝐴,𝜎𝜎𝐴𝐴, 𝜇𝜇𝐵𝐵,𝜎𝜎𝐵𝐵)′ are the parameters of the distribution to be estimated. We refer to 
𝜇𝜇𝐴𝐴 as good or bull state expectations, 𝜎𝜎𝐴𝐴 as bull state volatility and correspondingly 𝜇𝜇𝐵𝐵,𝜎𝜎𝐵𝐵 as the 
bad or bear state parameters. The probability of being in the bull state is denoted by 𝑝𝑝. 
 
 The fitting process proceeds as follows. Similar to Shimko [1993], we first use traded 
options prices to derive Black-Scholes implied volatilities and fit them to a quartic polynomial. 
This continuous function of the implied volatility curve is next used in the Black-Scholes 
formula to generate a continuous curve of option call prices. Finally, finite differencing is 
applied twice to the call prices to locally approximate the second derivative around the strikes of 
the original traded options. To fit the parameters of the mixture, we use standard nonlinear least 
squares. 
 

Quantifying Market Bimodality 
 

The daily set of European option contracts on the S&P500 index (SPX) are collected 
from OptionMetrics. The full data period for this paper starts in 01/01/1996 and ends in 
10/31/2020, and covers a couple of bull markets, the financial crisis and recovery, the taper 
tantrum, as well as the recent COVID-19 crisis. From the list of options contracts, only out of the 
money options are considered since they are most frequently traded. All contracts with zero bids 
are also removed.  

 
In this section, we estimate the time varying parameters   𝜽𝜽�𝒕𝒕 = (𝑝̂𝑝, 𝜇̂𝜇𝐴𝐴,𝜎𝜎�𝐴𝐴, 𝜇̂𝜇𝐵𝐵,𝜎𝜎�𝐵𝐵)𝑡𝑡′ on a 

monthly basis using implied volatilities one month out. The subscripts A refer to good states and 
the subscript B refers to bad states. 

 
 Exhibits 1-3 plot the parameters over time. We observe that bear market volatility 

perception tends to be higher than bull market volatility, i.e. 𝜎𝜎𝐴𝐴 < 𝜎𝜎𝐵𝐵, which is clearly related to 
a high put skew on the S&P500 index, i.e. the market rationally expects volatility to be higher in 
bad states. 

 
In Exhibit 1 we display the time series of the bull state probability over the next month. 

We find that this probability is on average around 63% (see summary statistics in Exhibit 4 
below), with an interquartile range of between 62% and 64%.  The low of the probability of 
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being in the bull state is around 46%, and the high is around 73% over the full historical sample.  
Surprisingly, while the low in the bull probability corresponded with the “Great Financial Crisis 
of 2008-2010 (GFC), the probability remained quite stable in the current “Global Virus Crisis” 
of spring 2020 (GVC). 
 

 
Exhibit 1: Time Varying Bull State Probability 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 
 

 
 

In Exhibit 2, the effect of the bimodal structure of the model becomes apparent.  In both 
the episodes of the global financial crisis and the recent global virus crisis, the expected bull state 
returns spiked up, whereas the expected bear state returns went significantly more negative. This 
illustrates that conditional on one of these states occurring, the market perceives larger than 
average absolute returns.  This is a sign that both left and right tails become more likely during 
these crises.  Surrounding these extraordinary market events, the market’s overall expectations of 
such fat tails realizing are usually quite good.  For instance, even though during both the GFC 
and GVC it was hard to ascertain the ultimate timing and unfolding of the chain of events, 
nonetheless, the fact that a deep selloff was followed by a substantial rally is some validation that 
the market’s estimation of conditional expected returns was quite good. 
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Exhibit 2: Time Varying State Return Expectations 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 
 

In Exhibit 3, we display the volatility of the bad state distribution and the volatility of the 
good state distribution over history, along with the VIX index (normalized to monthly horizon to 
match the estimated volatilities).  A couple of observations stand out. First, the increase in 
volatility is tracked by the VIX quite well.  However, the VIX spikes are predominantly 
capturing the spike up in the bear state volatility.  In other words, the equity index options 
market, at one month horizon, is predominantly capturing downside crash risk.  Thus, selling the 
VIX (via futures), has been roughly equivalent to selling downside crash risk.  This is consistent 
with the idea that the volatility risk premium in the VIX is predominantly a crash risk premium.  
Any VIX contingent risk management strategy then is largely a downside risk management 
strategy if historical data is reliable. 
 

Interestingly, the mixture parameter 𝑝𝑝 is less variable over time and stays roughly 63% 
over the entire period, indicating a relatively constant higher probability of being in a bull 
market. This was somewhat surprising to us, since much recent work in behavioral finance 
suggests that systematic mis-estimation of tail probabilities could be behind the option skew. It is 
possible that our model in this paper is too simplistic, or it is possible that over this period the 
market consistently believed that eventually all selloffs are temporary and will turn into rallies. 
The sample set has coincided with large central bank stimulus targeting asset prices, and recent 
action by central banks to boost liquidity and thus equity markets proposes a mechanism by 
which this belief could have been reaffirmed.  

 
We conclude from this simple analysis that for the equity markets, the divergence 

between bull and bear states is primarily quantified in terms of the consequences, i.e. the 
expected returns and volatilities of the states, rather than the probabilities of the states. 
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Exhibit 3: Time Varying State Volatilities 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 

 
Exhibit 4 summarizes the statistics for the five parameters over the long-term history. We 

have split the exhibit into two parts. The upper part shows the statistics for all periods combined, 
whereas the lower part shows the statistics only for the periods where the VIX was over 25, 
which we call “crisis” periods.  The crisis period observations corresponded to roughly one-fifth, 
or twenty percent, of the total observations. The main observation from this table is that even 
though the mean probability of switching between states does not change very much, the 
conditional expected returns and volatilities in the crisis period roughly double in absolute value 
when compared to the periods that include all the data. 
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 P(Bull) mu(Bull) sigma(Bull) mu(Bear) sigma(Bear) 

count 298 298 298 298 298 

mean 0.63 1.56 3.31 -3.10 5.82 

std 0.02 1.22 1.31 1.73 2.69 

min 0.46 -0.01 1.35 -17.18 2.18 

25% 0.62 0.77 2.37 -3.63 3.83 

50% 0.63 1.21 3.10 -2.69 5.20 

75% 0.65 1.94 3.96 -2.00 6.90 

max 0.73 9.62 10.27 -1.05 20.68 
 

(a) Entire sample 
 

 P(Bull) mu(Bull) sigma(Bull) mu(Bear) sigma(Bear) 
count 61 61 61 61 61 

mean 0.63 3.17 5.16 -5.52 9.75 

std 0.04 1.64 1.33 2.23 2.88 

min 0.46 1.09 3.57 -17.18 6.50 

25% 0.62 2.26 4.33 -5.98 7.96 

50% 0.64 2.87 4.81 -5.04 8.95 

75% 0.64 3.42 5.43 -4.13 10.57 

max 0.73 9.62 10.27 -2.74 20.68 
 

(b) Crisis periods: VIX Index > 25 
 

 
Exhibit 4: Parameter Summary Statistics For Entire Sample Since 2000-2020 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 
 

To summarize all these results, Exhibit 5 displays the probability densities of the 
parameters fit over two periods: the entire sample and during crisis periods when the VIX index 
is greater than 25. As discussed, during the crisis periods, bull state and bear state returns are 
higher and lower respectively than they are over the whole sample, i.e. the disagreement between 
mean returns in these states increases. Additionally, the standard deviation of the returns 
increases, i.e. investors become more uncertain about the levels of these returns. 

 
Interestingly, over the twenty yearlong dataset, we find that whereas the probability 

distribution of the switching parameter (between good states and bad states) fattens somewhat 
during crises, its mean remains largely unchanged. Thus, despite increased uncertainty on which 
state the future will bring, the odds are that we end up in the bull state.  This has consequences 
for portfolio construction and risk management.  Looking at the second panel of Exhibit 5, this 
analysis suggests that periods of heightened uncertainty are periods where excess liquidity can be 
deployed for higher ex-ante returns. In other words, crisis creates opportunities for higher ex-
ante returns as long as one does not fall into the bad state of low or negative returns permanently.   
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One way to achieve this asymmetric outcome is to insure against crises using tail hedging 
or other risk mitigation strategies, so that the hedges allow one to allocate liquidity during crises.  
The last panel of Exhibit 3 also suggests that while implied bear state volatilities are generally 
higher than bull state volatilities, the uncertainty in bear state volatility distributions is also 
higher, i.e. the probability distribution of bear state volatility is fatter than the bull state 
distribution.  Further, the bear state volatility distribution, especially during crises, has a very fat 
right skew, which points to heightened perceived tail risk in crises events. This observation has 
important consequences for the construction of risk premium portfolios. To the extent that risk 
premium portfolios are exposed to shocks to volatility, they need to be able to not only 
withstand, but actually to increase their exposure to risk premium harvesting strategies during 
crises.  As the events of 2020 illustrated, however, many risk premium harvesting strategies were 
actually forced to de-risk during the sharp market selloff of early 2020, and in the process missed 
the opportunity to benefit from the increased risk premium realized in the aftermath of the 
selloff.  To us, it seems that one practical way to avoid such an outcome in the future is to 
approach the risk premium portfolio construction problem as one would do in the insurance 
market, i.e. for every insurance policy sold, also consider purchasing some re-insurance to cut off 
fat tail risk when premiums are low and the markets are in a good state. This would prevent 
forced liquidation, and further create even better opportunities in periods when there is a crisis 
and the volatility risk premium is much higher than normal. 
 

 
 

 
Exhibit 5: Parameter Densities Over Entire Sample and Crisis Periods From 2000 to 2020 
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Source: LongTail Alpha, Bloomberg, OptionMetrics 
 

 
Historical Analysis of Mixing From The 2016 U.S. Election 
 
The 2016 Presidential election was an event for the record books. Prior to the election, 

there was general consensus that Hillary Clinton would win the election. The possibility of a 
Trump win coming into Election Day was low, and conditional on a Trump win, the market was 
expected to fall sharply.  As the results started to come in on election night showing a possible 
Trump win, the S&P index futures markets fell to their maximum downside limit.  However, as 
the full impact of market friendly tax proposals under a Trump administration became known, 
the market rallied sharply, and continued an almost 60% ascent over the next few years. 

 
Following the methodology described earlier, the binary distribution is fit on dates pre 

and post the 2016 U.S. election. The dates chosen were  11/4/2016 and 11/11/2016, while the 
actual election took place on 11/8/2016. Exhibit 6 below summarizes the fitted parameters of the 
binary mixture distributions using implied volatilities for one month options. 

 
 
 

 P(Bull) mu(Bull) sigma(Bull) mu(Bear) sigma(Bear) 

Date      

11/4/2016 0.59 2.34 2.87 -2.83 5.35 

11/11/2016 0.63 1.05 2.00 -1.94 3.86 
 

Exhibit 6: 1M Parameters Pre and Post 2016 Presidential Election 
Source: LongTail Alpha, Bloomberg, OptionMetrics 

 
The parameters fit the narrative for this event very intuitively. Before the U.S. election 

date, investors naturally were worried about possible outcomes and as such perceived risks were 
generally higher, being reflected in much higher volatilities over the next month for both bull and 
bear states (see exhibit 6). On the other hand, they were also confident that candidate Clinton 
was going to win the election, which at the time was perceived as the outcome more favorable to 
the markets. As such, forward looking returns were bullish. The night of the election, there were 
huge swings in markets as nervous investors lost their risk appetite as returns showed the 
possibility of a Trump win. A week after the election, the markets reflected optimism in the pro-
growth policies of a Trump administration and a Republican Congress. This reduced the 
bimodality as both bullish and bearish sentiment retreated to normal levels. Exhibit 7 illustrates 
the fitted mixture densities pre and post-election. The vertical lines represent the location of the 
spot price relative to the strikes pre and post-election. 
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Exhibit 7: 1M Densities Pre and Post 2016 Presidential Election 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 

 
 
 
Real Time Mixing: The 2020 U.S. Election 
 
At the time of this writing, Presidential elections in the U.S. for the 2020 were just 

concluded, but the results were not officially accepted by the incumbent, Donald Trump.  The 
general perception in the markets is that the Democratic candidate, Joe Biden, is less business 
and market friendly.  Muddying the analysis is the fact that as of this writing (mid November 
2020), Congressional elections are also somewhat undetermined.  The general consensus in the 
markets is that if both the House and the Senate turn Democrat, the Trump tax friendly initiatives 
will be swiftly overturned, and this would be negative for the companies who have benefited 
from lower taxes.  On the other hand, a split Congress would make any tax changes much harder 
to implement, so “status quo”, i.e. not large changes, would be more market friendly. 

 
The parameter estimates are displayed in Exhibit 8.  As we can see the probability of 

being in the bull and bear states has not changed.  This could be partly due to the status quo 
described above, or could be due to the fact that the stock market is increasingly reliant on the 
aid from the Federal Reserve.  Looking at the volatility estimates, we see that both bull and bear 
state volatilities have collapsed in the aftermath of the election, but the bear state volatility has 
seen a larger percentage decline than the bull state volatility.  The conditional negative expected 
bear state return has also fallen by over half, accompanied by a fall in the bear state uncertainty.  
This suggests to us that the passing of the election has taken out the election event risk, with the 
markets left generally comfortable that the stimulus action from the Fed, and potential future 
fiscal action is on balance good for the stock market. 
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 P(Bull) mu(Bull) sigma(Bull) mu(Bear) sigma(Bear) 

Date      

10/30/2020 0.64 3.82 4.98 -7.88 11.21 

11/11/2020 0.64 1.73 3.66 -3.76 6.02 
 

Exhibit 8: 1M Parameters Pre and Post 2020 Presidential Election 
Source: LongTail Alpha, Bloomberg, OptionMetrics 

 
 
 

 
 

Finally, as displayed in exhibit 9, we can see that both state densities have both shifted to 
the right and narrowed substantially.  The very significant compression of the bear state density 
shows again that the possibility of a large fat left tail event has been truncated as the election day 
has passed.  While there is still uncertainty on the final outcome of the election, as of this 
writing, it seems that the markets are implying little further uncertainty or unexpected events 
over the next month.  It is not the place for us to express our own views on the matter, but to the 
extent that market participants have the opposite view on the possibility of more uncertainty, we 
hope the quantification in this section is helpful in creating better portfolio postures if indeed the 
market consensus turns out to be wrong. 
 

 
Exhibit 9: 1M Densities Pre and Post 2020 Presidential Election 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
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What Can We Do About It?  How Bimodality Can Affect Portfolio Construction 
 
The analysis discussed so far has several implications for portfolio construction that we 

will illustrate with some examples. 
 
First, for investors who are only concerned with the tradeoff between expected returns 

and volatility, which is one of the core assumptions in mean variance asset optimizations, then 
switching out a unimodal distribution of returns for a bimodal distribution will have no impact 
on the optimal allocation. But, as discussed in Bhansali [2013], to the extent that investors 
believe tails are important in the portfolio construction process, using a bimodal distribution to 
model risky asset returns will reduce the optimal allocation of the risky asset in a portfolio. 

  
Exhibit 10 shows the statistics for a unimodal and a bimodal distribution. The bimodal 

distribution takes the same 𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵 parameters as the distribution from 11/11/2020 in Exhibit 8 
and its 𝜇𝜇𝐴𝐴, 𝜇𝜇𝐵𝐵 parameters are selected to match the annualized return of the S&P 500 index from 
01/01/1985 to 10/31/2020. The unimodal distribution is constructed to have the same annualized 
return and volatility as the bimodal distribution. Notice that the skewness and kurtosis of the 
bimodal distribution shows that it has a fatter left tail. 

 
 

 Unimodal 
Distribution 

Bimodal 
Distribution 

P(Bull) 1 0.64 

mu(Bull) 0.63% 2.61% 

sigma(Bull) 5.26% 3.66% 

mu(Bear) NaN -2.88% 

sigma(Bear) NaN 6.02% 

Annualized Expected Return 9.29% 9.29% 

Annualized Volatility 18.36% 18.36% 

Skewness 0.16 -0.46 

Kurtosis 3.04 3.40 
 

Exhibit 10: Unimodal and Bimodal Distribution Statistics For Asset Allocation Exercise 
Source: LongTail Alpha, Bloomberg, OptionMetrics 

 
Next, in order to determine an optimal allocation to risky assets like stocks, we need to 

assume a utility function of returns, which simply means defining investors’ preferences over 
increases and decreases of their wealth. Exhibit 11 (a) shows the optimal portfolio allocation for 
both the unimodal and bimodal distribution using a quadratic utility function designed to focus 
on the tradeoff between expected returns and volatility. Since both distributions have the same 
annualized return and volatility, and the quadratic utility function ignores the impact of higher 
moments on preferences by construction, we can see that the optimal allocations are identical.  

 
Because the mean variance utility function is only concerned with the first and second 

moments of the distribution, it does not incorporate preferences coming from either the left or the 
right tail of the distribution. To illustrate this point we will look at two games. In game one, 
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investors have to decide between a guaranteed +5% return and a coin toss between receiving 0% 
or +10%. In game two, the mirror image of game one, investors decide between a guaranteed -
5% loss and the coin toss between losing 0% or -10%. In both games, most investors would pick 
the sure thing because the coin tosses have an additional element of risk. Under a mean variance 
framework, the perceived benefit of locking in the gain is the same as the perceived benefit of 
locking in the loss. However, most investors would agree that the guaranteed loss in game two is 
much more valuable than the guaranteed gain in the first game, i.e. that negative tails matter. 
This is consistent with the behavior of option participants that bid up the put skew of risky assets. 
Exhibit 11 (b) incorporates these preferences by looking at the optimal allocations using a CRRA 
(“constant relative risk aversion”) utility function.  In contrast to Exhibit 11 (a), we can see that 
the negative skewness and the higher kurtosis of the bimodal distribution reduces the optimal 
allocation to the S&P500 index by 4%. 
 

 
 

 Unimodal Distribution Bimodal Distribution 

Optimal Weight to S&P 500 Index 0.67 0.67 

Optimal Weight to Cash 0.33 0.33 

Portfolio Annualized Return 6.27% 6.27% 

Portfolio Annualized Volatility 12.39% 12.39% 

Portfolio Skewness 0.16 -0.46 
Portfolio Kurtosis 3.04 3.40 

 
 

(a) The utility function used to construct the optimal allocation is of a quadratic form 
𝑢𝑢(𝑟𝑟) = 𝑟𝑟 − 𝜂𝜂𝑟𝑟2where 𝑟𝑟 is the corresponding return on the portfolio consisting of the 
S&P500 index and cash yielding zero. This utility function creates a mean variance 

optimization problem and in this example 𝜂𝜂 = 2. 
 

 Unimodal Distribution Bimodal Distribution 

Optimal Weight to S&P 500 Index 0.7 0.66 

Optimal Weight to Cash 0.3 0.34 

Portfolio Annualized Return 6.49% 6.14% 

Portfolio Annualized Volatility 12.82% 12.13% 

Portfolio Skewness 0.16 -0.46 

Portfolio Kurtosis 3.04 3.4 
 
 

(b) The utility function used to construct the optimal allocation is a power utility function 
𝑢𝑢(𝑟𝑟) = (1+𝑟𝑟)1−𝜂𝜂−1

1−𝜂𝜂
 and in this example 𝜂𝜂 = 4. 
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Exhibit 11: Optimal Allocation for Quadratic And CRRA Utility Functions Under 
Unimodality And Bimodality 

Source: LongTail Alpha, Bloomberg, OptionMetrics 
 
 
Another way portfolio construction is impacted is if we believe that some of the market 

implied distribution estimates are inaccurate. For example, suppose the risk-neutral estimate of 
64% probability of being in the good state over the next month was too high, and that the true 
probability was closer to 50%. Further, let us assume that the outcomes in the good state and bad 
state were unchanged from what is shown in Exhibit 10, i.e. the expected returns and volatilities 
were accurate.  How would we implement this view? 

 
A reduction in the probability reduces the weighted average expected return since the bad 

state expected return is lower.  Similarly, the volatility of the full distribution would now have a 
higher value. Exhibit 12 shows the changes in the bimodal distribution statistics when moving to 
a 50% probability of being in a bull state. The net effect on the optimal portfolio, which we can 
see in Exhibit 13 (a), is that the allocation to the S&P500 index is reduced by 64%. 

 
 

 Bimodal 
Distribution 

Bimodal 
Distribution with 

P(Bull)=0.5 

P(Bull) 0.64 0.5 
mu(Bull) 2.61% 2.61% 

sigma(Bull) 3.66% 3.66% 
mu(Bear) -2.88% -2.88% 

sigma(Bear) 6.02% 6.02% 

Annualized Expected Return 9.29% 0.26% 
Annualized Volatility 18.36% 19.44% 

Skewness -0.46 -0.34 
Kurtosis 3.4 3.08 

 
 

Exhibit 12: Bimodal Distributions with Decreased Bull State Probability 
Source: LongTail Alpha, Bloomberg, OptionMetrics 

 
 
 
 
 
 
 

 
Given that we have a higher expectation of volatility and lower expectation of return than 

the option implied values, we can do a number of things.  As discussed in Bhansali [2013], we 
would see the value of long volatility strategies, i.e. via the purchase of options.  To achieve this, 
we could simply implement long put option strategies on the existing asset allocation, or replace 
some of the long equity position with call options. Exhibits 13 (b) and (c) show the optimal 
portfolio allocations when including a put option or a call option to the portfolio.  This naturally 
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shows the benefits conferred by including options in more robust portfolio construction in the 
presence of uncertainty about future states of the world. 

 
 Bimodal Distribution Bimodal Distribution 

with P(Bull)=0.5 

Optimal Weight to S&P 500 Index 0.66 0.02 

Optimal Weight to Cash 0.34 0.98 

Portfolio Annualized Return 6.14% 0.01% 

Portfolio Annualized Volatility 12.13% 0.38% 

Portfolio Skewness -0.46 -0.34 
Portfolio Kurtosis 3.40 3.08 

 
(a) Optimal portfolio consists of the S&P500 index and cash yielding zero. 

 
 

 Bimodal Distribution Bimodal Distribution 
with P(Bull)=0.5 

Optimal Weight to S&P 500 Index 0.67 0.12 

Optimal Weight to Cash 0.2 0.39 

Optimal (Notional) Weight to 5% OTM Put 0.13 0.49 

Portfolio Annualized Return 6.99% 4.02% 

Portfolio Annualized Volatility 11.88% 2.30% 

Portfolio Skewness -0.29 1.74 
Portfolio Kurtosis 3.06 8.93 

 
 

(b) Optimal portfolio also includes a one month 5% OTM put on the S&P500 index. 
 

 Bimodal 
Distribution 

Bimodal 
Distribution with 

P(Bull)=0.5 

Optimal Weight to S&P 500 Index 0.62 0 

Optimal Weight to Cash 0.12 0.48 

Optimal (Notional) Weight to 5% OTM Call 0.26 0.52 

Portfolio Annualized Return 7.36% 2.96% 

Portfolio Annualized Volatility 12.17% 2.50% 

Portfolio Skewness -0.14 3.98 

Portfolio Kurtosis 3.6 22.65 
 
 

(c) Optimal portfolio also includes a one month 5% OTM call on the S&P500 index. 
 

Exhibit 13: Optimal Allocations for Bimodal Distributions 
Source: LongTail Alpha, Bloomberg, OptionMetrics 
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Conclusion 
 

 We use a simple mixture distribution framework based on five parameters to 
estimate the probability distributions of good and bad, or bull and bear states, as reflected in 
options markets. Our main findings are that implied return distributions change significantly 
during normal and stressed market situations, and in particular the uncertainty in both 
distributions also changes significantly during market stresses. We apply this to both the 2016 
US Presidential election, and also to the 2020 Presidential election.  Our practical conclusions 
are intuitive and logical: investors faced with highly unpredictable states can manage their 
portfolios more effectively by dynamically allocating between risky and riskless assets and also 
by using options.  This illustrates that when Mr. Market is behaving erratically, smart investors 
can avail of the tools from quantitative finance and derivatives markets to create attractive 
asymmetries in their portfolio. 
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